Hydrogen-bond potential for ice VIII-X phase transition

نویسندگان

  • Xi Zhang
  • Shun Chen
  • Jichen Li
چکیده

Repulsive force between the O-H bonding electrons and the O:H nonbonding pair within hydrogen bond (O-H:O) is an often overlooked interaction which dictates the extraordinary recoverability and sensitivity of water and ice. Here, we present a potential model for this hidden force opposing ice compression of ice VIII-X phase transition based on the density functional theory (DFT) and neutron scattering observations. We consider the H-O bond covalent force, the O:H nonbond dispersion force, and the hidden force to approach equilibrium under compression. Due to the charge polarization within the O:H-O bond, the curvatures of the H-O bond and the O:H nonbond potentials show opposite sign before transition, resulting in the asymmetric relaxation of H-O and O:H (O:H contraction and H-O elongation) and the H+ proton centralization towards phase X. When cross the VIII-X phase boundary, both H-O and O:H contract slightly. The potential model reproduces the VIII-X phase transition as observed in experiment. Development of the potential model may provide a choice for further calculations of water anomalies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen bond topology and the ice VII/VIII and Ih/XI proton ordering phase transitions.

Ice Ih, ordinary ice at atmospheric pressure, is a proton-disordered crystal that when cooled under special conditions is believed to transform to ferroelectric proton-ordered ice XI, but this transformation is still subject to controversy. Ice VII, also proton disordered throughout its region of stability, transforms to proton-ordered ice VIII upon cooling. In contrast to the ice Ih/XI transit...

متن کامل

Effect of salt on the H-bond symmetrization in ice.

The richness of the phase diagram of water reduces drastically at very high pressures where only two molecular phases, proton-disordered ice VII and proton-ordered ice VIII, are known. Both phases transform to the centered hydrogen bond atomic phase ice X above about 60 GPa, i.e., at pressures experienced in the interior of large ice bodies in the universe, such as Saturn and Neptune, where non...

متن کامل

Correlated Tunneling in Hydrogen Bonds

We study the quantum nature of the protons participating in hydrogen bonds in several ice structures by analyzing the one particle density matrix. We find that in all cases, including ice Ih, the most common form of ice, and the high pressure phases, ice VIII, VII, and X, the system is ground-state dominated. However, while the dynamics is uncorrelated in the structures with standard asymmetric...

متن کامل

Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced pha...

متن کامل

Structural investigation of a hydrogen bond order-disorder transition in a polar one-dimensional confined ice.

The hydrogen-bond arrangement within crystalline 2,3,6,7,10,11-hexahydroxytriphenylene tetrahydrate (HHTP·4H2O) undergoes an order-disorder transition at 240 K, as evidenced by the emergence and disappearance of systematic absence violations in variable-temperature single-crystal X-ray diffraction measurements. The low-temperature ordered phase is polar with ferroelectric coupling between neigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016